viernes, 13 de abril de 2012
MEMEORIA CACHE
En informática, la caché de CPU, es una caché1 (/ˈkæʃ/ o /kaʃ/) usada por la unidad central de procesamiento de una computadora para reducir el tiempo de acceso a la memoria. La caché es una memoria más pequeña y rápida, la cual almacena copias de datos ubicados en la memoria principal que se utilizan con más frecuencia.
Es un conjunto de datos duplicados de otros originales, con la propiedad de que los datos originales son costosos de acceder, normalmente en tiempo, respecto a la copia en la caché. Cuando se accede por primera vez a un dato, se hace una copia en el caché; los accesos siguientes se realizan a dicha copia, haciendo que el tiempo de acceso medio al dato sea menor.
Cuando el procesador necesita leer o escribir en una ubicación en memoria principal, primero verifica si una copia de los datos está en la caché. Si es así, el procesador de inmediato lee o escribe en la memoria caché, que es mucho más rápido que de la lectura o la escritura a la memoria principal.
Nombre
La palabra procede de la voz inglesa cache (/kæʃ/; «escondite secreto para guardar mercancías, habitualmente de contrabando») y esta a su vez de la francesa cache, (/kaʃ/; «escondrijo o escondite»). A menudo, en español se escribe con tilde sobre la «e» del mismo modo como el que se venía escribiendo con anterioridad al neologismo la palabra «caché» («distinción o elegancia» o «cotización de un artista»), proveniente de un étimo también francés, pero totalmente distinto: cachet, (/ka'ʃɛ/; «sello» o «salario»). La Real Academia Española sólo reconoce la palabra con tilde,1 aunque en la literatura especializada en Arquitectura de Computadoras (como, entre otros, las traducciones de los libros de Andrew S. Tanenbaum, John L. Hennessy y David A. Patterson) se emplea siempre la palabra sin tilde (aunque debería, además, escribirse en cursiva).
Memoria caché o RAM caché
Un caché es un sistema especial de almacenamiento de alta velocidad. Puede ser tanto un área reservada de la memoria principal como un dispositivo de almacenamiento de alta velocidad independiente. Hay dos tipos de caché frecuentemente usados en las computadoras personales: memoria caché y caché de disco. Una memoria caché, llamada también a veces almacenamiento caché o RAM caché, es una parte de memoria RAM estática de alta velocidad (SRAM) más rápida que la lenta y barata RAM dinámica (DRAM) usada como memoria principal. La memoria caché es efectiva dado que los programas acceden una y otra vez a los mismos datos o instrucciones. Guardando esta información en SRAM, la computadora evita acceder a la lenta DRAM.
Cuando se encuentra un dato en la caché, se dice que se ha producido un acierto, siendo un caché juzgado por su tasa de aciertos (hit rate). Los sistemas de memoria caché usan una tecnología conocida por caché inteligente en la cual el sistema puede reconocer cierto tipo de datos usados frecuentemente. Las estrategias para determinar qué información debe de ser puesta en el caché constituyen uno de los problemas más interesantes en la ciencia de las computadoras. Algunas memorias caché están construidas en la arquitectura de los microprocesadores. Por ejemplo, el procesador Pentium II tiene una caché L2 de 512 Kilobytes.
La caché de disco trabaja sobre los mismos principios que la memoria caché, pero en lugar de usar SRAM de alta velocidad, usa la convencional memoria principal. Los datos más recientes del disco duro a los que se ha accedido (así como los sectores adyacentes) se almacenan en un buffer de memoria. Cuando el programa necesita acceder a datos del disco, lo primero que comprueba es la caché del disco para ver si los datos ya están ahí. La caché de disco puede mejorar drásticamente el rendimiento de las aplicaciones, dado que acceder a un byte de datos en RAM puede ser miles de veces más rápido que acceder a un byte del disco duro.
Composición interna
La memoria caché está estructurada, una caché L2 de 512 KiB se distribuye en 16.384 filas y 63 columnas llamado Tag RAM, que indica a qué porción de la RAM se halla asociada cada línea de caché, es decir, traduce una dirección de RAM en una línea de caché concreta.
Política de ubicación
Decide dónde debe colocarse un bloque de memoria principal que entra en la memoria caché. Las más utilizadas son:
Directa: Al bloque i-ésimo de memoria principal le corresponde la posición i módulo n, donde n es el número de bloques de la memoria caché.
Asociativa: Cualquier bloque de memoria principal puede ir en cualquiera de los n bloques de la memoria caché.
Asociativa por conjuntos: La memoria caché se divide en k conjuntos de bloques, así al bloque i-ésimo de memoria principal le corresponde el conjunto i módulo k. Dicho bloque de memoria podrá ubicarse en cualquier posición de ese conjunto.
Política de extracción
La política de extracción determina cuándo y qué bloque de memoria principal hay que traer a memoria caché. Existen dos políticas muy extendidas:
Por demanda: Un bloque sólo se trae a memoria caché cuando ha sido referenciado y se produzca un fallo.
Con prebúsqueda: Cuando se referencia el bloque i-ésimo de memoria principal, se trae además el bloque (i+1)-ésimo. Esta política se basa en la propiedad de localidad espacial de los programas.
Política de reemplazo
Véase también: Algoritmos de reemplazo de páginas
Determina qué bloque de memoria caché debe abandonarla cuando no existe espacio disponible para un bloque entrante. Básicamente hay cuatro políticas que son:
Aleatoria: El bloque es reemplazado de forma aleatoria.
FIFO: Se usa un algoritmo First In First Out FIFO (primero en entrar es el primero en salir) para determinar qué bloque debe abandonar la caché. Este algoritmo generalmente es poco eficiente.
Menos recientemente usado (LRU): Se sustituye el bloque que hace más tiempo que no se ha usado en la caché, traeremos a caché el bloque en cuestión y lo modificaremos ahí.
Menos frecuencias usadas (LFU): Se sustituye el bloque que ha experimentado menos referencias.
martes, 10 de abril de 2012
MEMORIA PRINCIPAL
Memoria principal
La memoria principal o primaria, también llamada memoria central, es aquella memoria de un ordenador, donde se encuentran el código de instrucciones y los datos del programa, que es ejecutado actualmente.
La estructura de la memoria principal se ha cambiada en la historia de las computadoras. Desde los años 1980 es prevalentemente una unidad dividida en celdas que se identifican mediante una dirección. Está formada por bloques de circuitos integrados o chips capaces de almacenar, retener o "memorizar" información digital, es decir, valores binarios; a dichos bloques tiene acceso el microprocesador de la computadora.
La MP se comunica con el microprocesador de la CPU mediante el bus de direcciones. El ancho de este bus determina la capacidad que posea el microprocesador para el direccionamiento de direcciones en memoria.
En algunas oportunidades suele llamarse "memoria interna" a la MP, porque a diferencia de los dispositivos de memoria secundaria, la MP no puede extraerse tan fácilmente por usuarios no técnicos.
La MP es el núcleo del sub-sistema de memoria de una computadora, y posee una menor capacidad de almacenamiento que la memoria secundaria, pero una velocidad millones de veces superior.
El contenido de las memorias no es otra cosa que dígitos binarios o bits (binary digits), que se corresponden con dos estados lógicos: el 0 (cero) sin carga eléctrica y el 1 (uno) con carga eléctrica. A cada uno de estos estados se le llama bit, que es la unidad mínima de almacenamiento de datos.
El microprocesador direcciona las posiciones de la RAM para poder acceder a los datos almacenados en ellas y para colocar los resultados de las operaciones.
Al "bloque de MP", suele llamarse memoria RAM, por ser éste el tipo de chips de memoria que conforman el bloque, pero se le asocian también el chip CMOS, que almacena al programa BIOS del sistema y los dispositivos periféricos de la memoria secundaria (discos y otros periféricos), para conformar el sub-sistema de memoria del computador.
Los bloques RAM, los ROM y las memorias de almacenamiento secundario conforman el subsistema de memoria de una computadora.
La estructura de la memoria principal se ha cambiada en la historia de las computadoras. Desde los años 1980 es prevalentemente una unidad dividida en celdas que se identifican mediante una dirección. Está formada por bloques de circuitos integrados o chips capaces de almacenar, retener o "memorizar" información digital, es decir, valores binarios; a dichos bloques tiene acceso el microprocesador de la computadora.
La MP se comunica con el microprocesador de la CPU mediante el bus de direcciones. El ancho de este bus determina la capacidad que posea el microprocesador para el direccionamiento de direcciones en memoria.
En algunas oportunidades suele llamarse "memoria interna" a la MP, porque a diferencia de los dispositivos de memoria secundaria, la MP no puede extraerse tan fácilmente por usuarios no técnicos.
La MP es el núcleo del sub-sistema de memoria de una computadora, y posee una menor capacidad de almacenamiento que la memoria secundaria, pero una velocidad millones de veces superior.
Tipos
En las computadoras son utilizados dos tipos:- ROM o memoria de sólo lectura (Read Only Memory). Viene grabada de fábrica con una serie de programas. El software de la ROM se divide en dos partes:
- Rutina de arranque o POST (Power On Self Test, auto diagnóstico de encendido): Realiza el chequeo de los componentes de la computadora; por ejemplo, circuitos controladores de video, de acceso a memoria, el teclado, unidades de disco,etc. Se encarga de determinar cuál es el hardware que está presente y de la puesta a punto de la computadora. Mediante un programa de configuración, el SETUP, lee una memoria llamada CMOS RAM (RAM de Semiconductor de óxido metálico). Ésta puede mantener su contenido durante varios años, aunque la computadora está apagada, con muy poca energía eléctrica suministrada por una batería, guarda la fecha, hora, la memoria disponible, capacidad de disco rígido, si tiene disquetera o no. Se encarga en el siguiente paso de realizar el arranque (booteo): lee un registro de arranque 'BR' (Boot Record) del disco duro o de otra unidad (como CD, USB, etc.), donde hay un programa que carga el sistema operativo a la RAM. A continuación cede el control a dicho sistema operativo y el computador queda listo para trabajar.
- Rutina BIOS o Sistema Básico de Entrada-Salida (Basic Input-Output System): permanece activa mientras se está usando el computador. Permite la activación de los periféricos de entrada/salida: teclado, monitor, ratón, etc.
- RAM o memoria de acceso aleatorio (Random Access Memory). Es la memoria del usuario que contiene de forma temporal el programa, los datos y los resultados que están siendo usados por el usuario del computador. En general es volátil, pierde su contenido cuando se apaga el computador, es decir que mantiene los datos y resultados en tanto el bloque reciba alimentación eléctrica, a excepción de la CMOS RAM.
El contenido de las memorias no es otra cosa que dígitos binarios o bits (binary digits), que se corresponden con dos estados lógicos: el 0 (cero) sin carga eléctrica y el 1 (uno) con carga eléctrica. A cada uno de estos estados se le llama bit, que es la unidad mínima de almacenamiento de datos.
El microprocesador direcciona las posiciones de la RAM para poder acceder a los datos almacenados en ellas y para colocar los resultados de las operaciones.
Al "bloque de MP", suele llamarse memoria RAM, por ser éste el tipo de chips de memoria que conforman el bloque, pero se le asocian también el chip CMOS, que almacena al programa BIOS del sistema y los dispositivos periféricos de la memoria secundaria (discos y otros periféricos), para conformar el sub-sistema de memoria del computador.
Los bloques RAM, los ROM y las memorias de almacenamiento secundario conforman el subsistema de memoria de una computadora.
domingo, 8 de abril de 2012
TOPOLOGIA DE REDES
La topología de red se define como la cadena de comunicación usada por los nodos que conforman una red para comunicarse. Un ejemplo claro de esto es la topología de árbol, la cual es llamada así por su apariencia estética, por la cual puede comenzar con la inserción del servicio de internet desde el proveedor, pasando por el router, luego por un switch y este deriva a otro switch u otro router o sencillamente a los hosts (estaciones de trabajo), el resultado de esto es una red con apariencia de árbol porque desde el primer router que se tiene se ramifica la distribución de internet dando lugar a la creación de nuevas redes o subredes tanto internas como externas. Además de la topología estética, se puede dar una topología lógica a la red y eso dependerá de lo que se necesite en el momento.
La topologia de bus.
Construcción
Los extremos del cable se terminan con una resistencia de acople denominada terminador, que además de indicar que no existen más ordenadores en el extremo, permiten cerrar el bus por medio de un acople de impedancias.
Es la tercera de las topologías principales. Las estaciones están conectadas por un único segmento de cable. A diferencia de una red en anillo, el bus es pasivo, no se produce generación de señales en cada nodo o router.
Ventajas
*Facilidad de implementación y crecimiento.
*Simplicidad en la arquitectura.
Desventajas
- Hay un límite de equipos dependiendo de la calidad de la señal.
- Puede producirse degradación de la señal.
- Complejidad de reconfiguración y aislamiento de fallos.
- Limitación de las longitudes físicas del canal.
- Un problema en el canal usualmente degrada toda la red.
- El desempeño se disminuye a medida que la red crece.
- El canal requiere ser correctamente cerrado (caminos cerrados).
- Altas pérdidas en la transmisión debido a colisiones entre mensajes.
- Es una red que ocupa mucho espacio.
Topologia en estrella.
Una red en estrella es una red en la cual las estaciones están conectadas directamente a un punto central y todas las comunicaciones se han de hacer necesariamente a través de este. Los dispositivos no están directamente conectados entre sí, además de que no se permite tanto tráfico de información. Dado su transmisión, una red en estrella activa tiene un nodo central activo que normalmente tiene los medios para prevenir problemas relacionados con el eco.
Se utiliza sobre todo para redes locales. La mayoría de las redes de área local que tienen un enrutador (router), un conmutador (switch) o un concentrador (hub) siguen esta topología. El nodo central en estas sería el enrutador, el conmutador o el concentrador, por el que pasan todos los paquetes de usuarios.
Componente electrónico
Hub es el componente electrónico que permite un enlace físico en las redes de estrella.Ventajas
- Si un PC se desconecta o se rompe el cable solo queda fuera de la red ese PC.
- Fácil de agregar, reconfigurar arquitectura PC.
- Fácil de prevenir daños o conflictos.
- Centralización de la red
Desventajas
- Si el nodo central falla, toda la red deja de transmitir.
- Es costosa, ya que requiere más cable que las topologías bus o anillo.
- El cable viaja por separado del concentrador a cada computadora.
Topologia de anillo.
Topología de red en la que cada estación está conectada a la siguiente y la última está conectada a la primera. Cada estación tiene un receptor y un transmisor que hace la función de repetidor, pasando la señal a la siguiente estación.
En este tipo de red la comunicación se da por el paso de un token o testigo, que se puede conceptualizar como un cartero que pasa recogiendo y entregando paquetes de información, de esta manera se evitan eventuales pérdidas de información debidas a colisiones.
En un anillo doble (Token Ring), dos anillos permiten que los datos se envíen en ambas direcciones (Token passing). Esta configuración crea redundancia (tolerancia a fallos). Evita las colisiones.
- El sistema provee un acceso equitativo para todas las computadoras.
- El rendimiento no decae cuando muchos usuarios utilizan la red.
- Arquitectura muy sólida.
- Entra siempre en conflictos
Ventajas
Desventajas
- Longitudes de canales
- El canal usualmente se degradará a medida que la red crece.
- Difícil de diagnosticar y reparar los problemas.
- Si una estación o el canal falla, las restantes quedan incomunicadas (Circuito unidireccional).
topologia malla.
La topología de red mallada es una topología de red en la que cada nodo está conectado a todos los nodos. De esta manera es posible llevar los mensajes de un nodo a otro por diferentes caminos. Si la red de malla está completamente conectada, puede existir absolutamente ninguna interrupción en las comunicaciones. Cada servidor tiene sus propias conexiones con todos los demás servidores.
Funcionamiento
Esta topología, a diferencia de otras (como la topología en árbol y la topología en estrella), no requiere de un servidor o nodo central, con lo que se reduce el mantenimiento (un error en un nodo, sea importante o no, no implica la caída de toda la red).Las redes de malla son auto ruteables. La red puede funcionar, incluso cuando un nodo desaparece o la conexión falla, ya que el resto de los nodos evitan el paso por ese punto. En consecuencia, la red malla, se transforma en una red muy confiable.
Es una opción aplicable a las redes sin hilos (wireless), a las redes cableadas (wired) y a la interacción del software de los nodos.
Una red con topología en malla ofrece una redundancia y fiabilidad superiores. Aunque la facilidad de solución de problemas y el aumento de la confiabilidad son ventajas muy interesantes, estas redes resultan caras de instalar, ya que utilizan mucho cableado. Por ello cobran mayor importancia en el uso de redes inalámbricas (por la no necesidad de cableado) a pesar de los inconvenientes propios de las redes sin hilos.
En muchas ocasiones, la topología en malla se utiliza junto con otras topologías para formar una topología híbrida.
Una red de malla extiende con eficacia una red, compartiendo el acceso a una infraestructura de mayor porte.
Ventajas de la red en malla
- Es posible llevar los mensajes de un nodo a otro por diferentes caminos.
- No puede existir absolutamente ninguna interrupción en las comunicaciones.
- Cada servidor tiene sus propias comunicaciones con todos los demás servidores.
- Si falla un cable el otro se hará cargo del trafico.
- No requiere un nodo o servidor central lo que reduce el mantenimiento.
- Si un nodo desaparece o falla no afecta en absoluto a los demás nodos.
- Si desaparece no afecta tanto a los nodos de redes.
Desventajas de las redes en malla
El costo de la red puede aumentar en los casos en los que se implemente de forma alámbrica, la topología de red y las características de la misma implican el uso de más recursos.En el caso de implementar una red en malla para atención de emergencias en ciudades con densidad poblacional de más de 5000 habitantes por kilómetro cuadrado, la disponibilidad del ancho de banda puede verse afectada por la cantidad de usuarios que hacen uso de la red simultáneamente; para entregar un ancho de banda que garantice la tasa de datos en demanda y, que en particular, garantice las comunicaciones entre organismos de rescate, es necesario instalar más puntos de acceso, por tanto, se incrementan los costos de implementación y puesta en marcha.
Aplicación práctica
Un proyecto del MIT que desarrolla "one hundred dollar laptops" para las escuelas en países en desarrollo planea utilizar establecimiento de una red de malla para crear una infraestructura robusta y barata para los estudiantes que recibirán los ordenadores portátiles. Las conexiones instantáneas hechas por las computadoras portátiles reducirían la necesidad de una infraestructura externa tal como Internet para alcanzar todas las áreas, porque un nodo conectado podría compartir la conexión con los nodos próximos. Actualmente sólo se ha implementado este sistema en un país entero en todo el mundo. A través del Plan Ceibal, Uruguay ha hecho posible el sueño de miles de sus niños entregando una laptop a cada uno de ellos. Éstas corresponden a un programa originalmente pensado en Estados Unidos conocido como One Laptop Per Child (OLPC).[1]topologia en arbol.
Topología de red en la que los nodos están colocados en forma de árbol. Desde una visión topológica, la conexión en árbol es parecida a una serie de redes en estrella interconectadas salvo en que no tiene un nodo central. En cambio, tiene un nodo de enlace troncal, generalmente ocupado por un hub o switch, desde el que se ramifican los demás nodos. Es una variación de la red en bus, la falla de un nodo no implica interrupción en las comunicaciones. Se comparte el mismo canal de comunicaciones.
La topología en árbol puede verse como una combinación de varias topologías en estrella. Tanto la de árbol como la de estrella son similares a la de bus cuando el nodo de interconexión trabaja en modo difusión, pues la información se propaga hacia todas las estaciones, solo que en esta topología las ramificaciones se extienden a partir de un punto raíz (estrella), a tantas ramificaciones como sean posibles, según las características del árbol.
Los problemas asociados a las topologías anteriores radican en que los datos son recibidos por todas las estaciones sin importar para quien vayan dirigidos. Es entonces necesario dotar a la red de un mecanismo que permita identificar al destinatario de los mensajes, para que estos puedan recogerlos a su arribo. Además, debido a la presencia de un medio de transmisión compartido entre muchas estaciones, pueden producirse interferencia entre las señales cuando dos o más estaciones transmiten al mismo tiempo.
Desventajas de Topología de Árbol
- Se requiere mucho cable.
- La medida de cada segmento viene determinada por el tipo de cable utilizado.
- Si se viene abajo el segmento principal todo el segmento se viene abajo con él.
- Es más difícil su configuración.
Ventajas de Topología de Árbol
- Cableado punto a punto para segmentos individuales.
- Soportado por multitud de vendedores de software y de hardware.
Existen otras topologias de redes o topologias mixtas pero estas son las mas comunes en redes lans, wans entre otras.
Suscribirse a:
Entradas (Atom)